Условия эксплуатации, такие как величина и нестабильность тока могут также существенно сократить срок службы. В настоящий момент не существует никаких стандартов, определяющих срок службы и критерии надежности для светодиодов, хотя и существуют предложения авторитетных организаций считать сроком службы время, в течении которого световой поток деградирует до некоторого значения (например, 50%) от начальной величины. Некоторые компании предпочли разработать собственные методы прогнозирования срока службы и надежности на основе данных, полученных от потребителей, но ограниченный объем продукции большинства поставщиков препятствует реализации этого подхода. Еще больше недостатков обнаруживается в применении эмпирических методов прогнозирования, когда это касается надежности оптоэлектронных приборов. Во-первых, наиболее типичным видом отказа светодиодов является постепенная деградация выходной мощности в процессе эксплуатации. Однако, существующие стандарты оперируют информацией только в терминах постоянной интенсивности отказов. Хотя в большинстве случаев характеристики светодиодов ухудшаются постепенно, также наблюдались внезапные отказы из-за роста дислокаций с периферии активной области, разрушения p-n-перехода, роста дислокаций с окисленного торца или промежуточной области, разделяющей торец и диэлектрическое покрытие, и катастрофического оптического повреждения. Во-вторых, потребители, работающие со светодиодами, давно поняли, что их надежность, в особенности в части скорости деградации, часто зависит от поставщика компонентов.
Четкое определение отказа является наиболее критическим местом, и большинство производителей и потребителей имеют собственное мнение о том, когда оптоэлектронный прибор можно считать вышедшим из строя. Один из методов определения отказа заключается в том, чтобы зафиксировать ток и следить за выходной мощностью прибора, считая прибор неработоспособным при падении выходной мощности ниже определенного уровня (обычно от 20% до 50 %) от исходной величины. Другой метод основан на контроле падения выходной мощности прибора и его компенсации путем увеличения управляющего тока. Когда управляющий ток достигает определенной относительной величины (например, 50%) прибор считается вышедшим из строя. Некоторые механизмы отказа и дефекты также могут инициировать выход из строя светодиодов.
Специалисты по надежности не должны фокусироваться исключительно на влиянии температуры и плотности тока, потому что такой подход может привести к неверному отбору продуктов.
Деградация активной области светодиодов
Излучение света в светодиоде происходит в результате рекомбинации инжектированных носителей в активной области. Зарождение и рост дислокаций, также как преципитация узловых атомов, приводит к деградации внутренней части этой области. Эти процессы могут осуществиться только при наличии дефекта кристаллической структуры; высокая плотность инжектированного тока, разогрев из-за инжектированного тока и тока утечки, а также испускаемый свет ускоряют развитие дефекта. Выбор материала, из которого изготовлен светодиод, имеет значение, так как система AlGaAs/GaAs гораздо более чувствительна к этому механизму отказа, чем система InGaAs (P)/InP.
Система InGaN/GaN (для светодиодов голубого и зеленого излучения) нечувствительна к дефектам. В активных областях могут встречаться простые p-n-переходы, встроенные гетероструктуры и множественные квантовые ямы. На границах раздела таких структур неизбежны изменения химического состава или даже параметров решетки. При высоком уровне инжекции химические компоненты могут мигрировать путем электромиграции в другие области. Структурные изменения порождают кристаллические дефекты наподобие дислокаций и точечных дефектов, которые ведут себя как неизлучающие центры, препятствующие естественной излучающей рекомбинации и в результате генерирующие дополнительное тепло внутри активного слоя.
Деградация электродов
Деградация электродов в светодиодах в основном имеет место на электроде р-области (обычно прибор состоит из подложки n-типа, и электрод р-области формируется вблизи активной области прибора). Основная причина деградации электрода заключается в диффузии металла во внутреннюю область (так называемая периферийная диффузия) полупроводника. Диффузия усиливается с увеличением инжектированного тока и температуры.
К сожалению, выбрать подходящий материал для омического контакта к р-области светодиодов InGaN/GaN довольно сложно из-за большой ширины запрещенной зоны GaN р-типа. Электрод должен обладать меньшим коэффициентом взаимной диффузии составляющих, инженеры иногда применяют барьерный слоя для подавления эффектов электромиграции. Проблемы с токовым насыщением в мощных светодиодах более серьезны. Для решения этих проблем нужно оптимизировать конструкцию электрода светодиода и вертикальную составляющую электрического тока. Электроды из некоторых материалов, таких как прозрачный проводящий оксид индия-олова (ITO), или отражающих металлов (серебро) подвержены таким проблемам как электромиграция и термическая нестабильность.
Деградация рабочей кромки является серьезной проблемой для светодиодов на AlGaAs/GaAs, излучающих видимый свет, но нехарактерна для светодиодов диодов на InGaAsP. Окисление путем фотохимических реакций приводит к увеличенным значениям порогового тока и, соответственно, уменьшению времени жизни светодиода. Другим типом отказа рабочей кромки является так называемый катастрофический оптический дефект (КОД) — когда величина световой энергии превосходит определенный уровень и рабочая кромка начинает плавиться. Отказ оптоэлектронных приборов, в обычных условиях устойчивых к деградации рабочей кромки, может быть инициирован повреждениями при обработке, посторонними загрязнения и дефектами материала светодиода.
Термическая деградация
Тепловая деградация из-за каверн в припое часто доминирует в светодиодах в первые 10000 часов работы. Количество тепла, выделяющееся при работе светодиодов, требует их монтажа на радиатор или теплопоглощающую подлодку, часто с помощью припоя. Если каверны в припое создают условия для недостаточного отвода тепла, возникающие горячие точки приводят тепловой деградации и отказу. Образование каверн в припое может происходить из-за нарушения условий обработки или диффузии металла на границе раздела (т.н. каверны по Киркендаллу). Также образование каверн может происходить из-за электромиграции. Когда в металле протекает достаточно большой ток, вакансии и ионы металлов мигрируют к противоположным полюсам, приводя к образованию каверн (вакансии), кристаллов, бугорков и вискеров. Рост вискеров, который может начаться под действием внутренних напряжений, температуры, влажности и особенностей материала, обычно происходит на границе между припоем и радиатором и может привести к КЗ.
Электростатический разряд и электрическая перегрузка
Полупроводники чувствительны к дефектам, вызванным электростатическим разрядом (ЭСР). Видами отказа из-за ЭСР могут быть внезапный отказ, параметрические сдвиги или внутреннее повреждение, приводящее к деградации в процессе последующей эксплуатации. Согласно существующим нормативам, чувствительность светодиодов к ЭСР должна быть больше 100 В при тестировании на модели человеческого тела. Пробой из-за перегрузки и ЭСР являются существенной проблемой для светодиодов. Иногда разработчики используют диод Зинера или барьер Шотки для достижения определенного класса по ЭСР. Большинство коммерческих InGaN/GaN светодиодов формируется на сапфировых подложках, не имеющих электрической проводимости. Это приводит к появлению остаточного электрического заряда в приборе, что делает его более чувствительным к повреждениям, вызванным электростатическим разрядом и перегрузкой.
Термическая усталость и короткое замыкание
Разница в коэффициенте термического расширения у соединенных частей и припоя приводит к появлению механических напряжений на этапе изготовления, связанного с термоциклированием. Термическая усталость обычно наблюдается в приборах, изготовленных с использованием мягкого припоя, в то время как приборы, изготовленные с использованием твердого припоя, стабильны при циклической термической нагрузке. Благодаря относительно высокой смачиваемости, припой на основе олова может перелиться через край контактной площадки и сформировать закоротку. Отказы, связанные со сборкой в корпус, могут вызываться герметиком, электродными выводами и фосфором. Термические напряжения в герметике являются наиболее частой причиной отказа в светодиодах. Если — вследствие электрической перегрузки или высокой внешней температуры — температура корпуса достигает температуры перехода стеклянного наполнителя герметика (Tg), смола начинает быстро расширяться. Разница в коэффициенте термического расширения внутренних компонентов светодиода может привести к механическому повреждению. При очень низких температурах может произойти растрескивание эпоксидной композиции, из которой изготовлены линзы. Высокая температура, вызванная внутренним нагревом и неизлучающей рекомбинацией, и достигающая 150ºС, приводит к пожелтению эпоксидной композиции, что в результате меняет выходную оптическую мощность или цвет излучаемого света. Если индекс преломления герметика не соответствует индексу преломления полупроводникового материала, индуцированный свет остается в полупроводнике, в результате чего возникает дополнительный источник тепла. В результате перегрева эпоксидной композиции может происходить разрыв или отделение электродного вывода и снижение прочности соединения кристалла с подложкой. Эти проблемы в свою очередь могут привести к отслоению кристалла и эпоксидной композиции. Механические напряжения, вызванные свинцовыми проводниками являются еще одной причиной, в результате которой в приборе может появиться обрыв. Несоблюдение требований к давлению, положению и направлению в процессе пайки выводов может привести к появлению механических напряжений при нормальной рабочей температуре и изгибанию выводов в опасной близости от кристалла светодиода.
Большинство белых светодиодов используют желтый или красный/зеленый люминофор, которые подвержены термической деградации. Когда разработчики смешивают два или более различных люминофора, составляющие должны иметь сравнимое время жизни и характер деградации для обеспечения насыщенности цвета. Цветовая температура и чистота цвета люминофора также деградируют со временем.
0 комментариев